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INTRODUCTION

A round bar is the available form of many materials, and if fracture tests

are needed, it is more convenient to test in this form than the usual rec-

tangularly shaped specimens (ref 1). It saves fabrication time. Two types of

notches can be used easily with a round bar, a straight-fronted edge notch and

an annular notch. While a straight-fronted notch has no fabrication advantage

over an annular notch, it does allow much easier observation of the notch tip, a

requirement in most fracture tests. The edge-notched round bar specimen is

suited to L-R orientation (ref 1) fracture tests, that is, with the fracture

plane normal to the longitudinal direction of the bar and crack growth in the

radial direction. For transverse tests, disk or compact specimens (ref 1) or

the recently developed chevron-notched specimens (ref 2) should be used.

Bush (ref 3) was the first to perform comprehensive analysis of the round

bar bend specimen for fracture testing applications for use with power genera-

tion turbine rotors. The application which prompted the present work was frac-

ture testing of sintered tungsten rod stock used for kinetic energy projectiles.

The round bar specimen should prove useful for this material and others which

are difficult to machine. A round bar with a notch added can be used for frac-

ture tests with little or no additional machining. Bush's work is used here

along with limit solutions and recent finite element analysis (ref 4) to propose

test specimen geometries and associated stress intensity factor K expressions

for use in fracture testing. The entire range of crack depth relative to bar

diameter, a/D, is considered to accommodate different types of fracture tests.

References are listed at the end of this report.



ANALYSIS AND RESULTS

Figure 1 shows the basic elements of a round bar bend specimen for fracture

testing and some associated nomenclature. It is the same basic geometry as that

of Bush (ref 3) who obtained experimental compliance K results for a bar with

S/D = 3.33 and one with S/D = 6.67. His results are shown in Figure 2 along

with results from analysis and two expressions based on both experimental and

analytical results. The dimensionless K parameter used in Figure 2, albeit

complex, is based upon shallow and deep crack limit solutions as discussed in

the following paragraphs.

The deep crack limit for a round bar is different from that for a rec-

tangular bar. Combining the rectangular bar limit expression (ref 5) in terms

of bar diameter

lim(KBD3/2/PS)(1-a/D)3/ 2 = 0.994 (1)
a/D - 1

with an expression for the chordal length of a circular segment to account for

the changing B dimension as a/D -. '

B = 2D(a/D)1/2(1-a/D)1/2 (2)

gives the deep crack limit for the round bar

lim(KDS/2/PS)(1-a/D)2 = 0.497 (3)
a/D -1

The shallow crack limit for a round bar is also affected by changing crack

dimensions, as a/D - 0. The usual limit solution (ref 6) is rewritten in terms

of a', an effective crack depth which accounts for the variations in actual

depth across the width of a shallow crack which is in the shape of a circular

segment as shown in Figure 3,

lim K/a DI/2(ra'/D)1/2 = 1.122 (4)

a/D - 0

2
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where a = 8 PS/wD3, the relationship for the outer fiber stress, a, for a round

bar (ref 7). The ratio a'/a is determined from the moments of inertia of a cir-

cular segment, Is , and a rectangle, Ir , with the same overall dimensions a and B

a' = a(Is/Ir) (5)

Expressions for Is and Ir are written as follows (ref 7):

Ir = Ba3/12 (6)

and

lim Is  = 0.01143 D4 c'/16 (7)

a/D -0 I

where for a/D - 0, a = B/D. The quantity B/D can be written in terms of a/D

using Eq. (2). Combining Eqs. (2) and (4) through (7) gives the shallow crack

limit for a round bar

lim (KD$/2/PS)/(a/D)t/Z = 3.75 (8)
a/D - 0

The forms of both the deep and shallow crack limits, Eqs. (3) and (8), were

used to obtain a K parameter which converges to both limits

Y = (KDS/2/PS)(1-a/D)z/(a/D)P/2 (9)

This was the parameter used for plotting the experimental and analytical results

and the two K expressions in Figure 2.

One K expression was fitted to a combined set of data made up of finite

element data (ref 4) for S/D = 4.0 and 0.125 < a/D < 0.625, experimental

compliance data (ref 3) for S/D = 6.67 and 0.548 < a/D < 0.698, and the two

limit solutions, Y = 0.497 and 3.75. The finite element datum for a/D = 0.0625

was excluded from the fit to allow the expression to converge to the shallow

crack limit, believed to be more accurate than shallow crack finite element

data. The expression is

31



(KDS/2/PS)(1-a/O)2/(a/D)P/z = 3.75 - 10.93 a/D + 20.05 (a/D)2

- 19.93 (a/D)3 + 7.56 (a/D)'

0 < a/D < 1 , S/D = 4.0 (10)

Equation (10) fits the finite element results within 1.8 percent except within

-4.5 percent for the deepest crack result at a/D = 0.625. Equation (10) fits

the experimental results within 2.1 percent except within +7.5 percent for the

deepest crack result at a/D = 0.698, and it fits the two limits within 0.6 per-

cent. The poor fits with the deepest crack results are believed to be caused by

end-point accuracy problems with both the experimental and numerical methods.

In support of this, note that Eq. (10) passes between these two types of end-

point data and proceeds smoothly to the deep crack limit. It should be noted

also that use of the S/D = 6.67 experimental results for input to an S/D = 4.0

expression is considered to be approximately correct for relatively deep cracks,

that is, for a/D > 0.5.

A second K expression was fitted to a combined set of data made up of

experimental compliance data (ref 3) for S/D = 3.33 and 0.149 < a/D < 0.347, all

the data for a/D < 0.5, and the two limit solutions. The expression is

(KDS/2/PS)(1-a/D)2/(a/D)1/2 = 3.75 - 11.98 a/D + 24.40 (a/D)2

-25.69 (a/D)3 + 10.02 (a/D)'

0 < a/D < I , S/D = 3.33 (11)

Equation (11) fits the experimental and analytical data within 2.3 percent

except for the deepest crack results, as shown in Figure 2, and it fits the

two limits within 0.6 percent.

4
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DISCUSSION

Another recent set of numerical results can be compared with the

expressions here, Eqs. (10) and (11). Kapp (ref 8) described collocation K

results for rectangular bend specimens with similar span-to-depth ratios as

those considered here, S/W = 3.0 and 4.0. A direct comparison is ill-advised

due to the different shape, but the relative difference between results for S/W

= 3 and 4 is of interest here. The largest difference between Eqs. (10) and

(11) is for a/D = 0.2, where K for the S/D = 3.33 specimen is 3.6 percent lower

than that for S/D = 4.0. Kapp found a 2.7 percent lower value of (KBWS/2/PS) at

a/W = 0.2 for S/W = 3.0, compared with S/W = 4.0. So there is good agreement

between these two independent sets of results.

Ouchterlony (ref 9) described a K formula for the S/D = 3.33 geometry based

on Bush's work (ref 3). His formula agrees closely with Bush's S/D = 3.33

results for 0 < a/D < 0.35 and with Bush's S/D = 6.67 results for 0.35 < a/D <

0.60. The most significant difference between Ouchterlony's formula and Eq.

(11) is at the short crack limit, where his formula is 15 percent below the

limit. This is believed to be due to the inherent difficulties in Bush's

experiments as a/D - 0.

One additional point which should be discussed is the flat surfaces shown

in Figure 1 at the locations of contact between specimen and support pins.

These surfaces add to the complexity of the specimen, but in general they are

required to ensure a known value of applied K for the round bar specimen. With

no flat surfaces, the contact between specimen and pin would start as a point-

contact which could lead to a significant plastic indentation in the specimen

and loss of the required free-rolling loading condition. The small amount of

5

Ilkv. '.



material removed to make the flat surfaces and the remoteness of these surfaces
-5

from the crack result in no significant effect on K.

CONCLUSION

The round bar bend specimen and associated K expressions in Figure 1 and

Eqs. (10) and (11), respectively, can be used for general fracture mechanics
'1w

testing, includin§ Kic and fatigue crack growth rate tests. Estimates of the

absolute accuracy of Eqs. (10) and (11) can be made, based upon how well they

agree with the results of References 3, 4, 8, and the limit solutions. 5

Equations (10) and (11) are believed to be accurate within 1.5 percent for 0 <

a/D < 0.6 and within 3.0 percent for 0.6 < a/D < 1.0.
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Figure 2. Stress intensity factor parameter for round bar bend specimen.
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